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ARTICLE INFO ABSTRACT
Keywords: We present a novel data-driven surrogate approach for fast evaluation of the deformation dynam-
Neural network ics of soft particles, both initially spherical and ellipsoidal, suspended in external flows, specif-

Pseudo-rigid bodies
Barycenter and shape dynamics
Lagrangian particle tracking

ically predicting the hydrodynamic tractions on the particle surface. The core of the approach
relies on expressing the required force dyad as a linear combination of velocity gradient compo-
nents, modulated by form coefficients. These coefficients scale shear, rotational, and extensional
flow contributions to the velocity gradient. Two training strategies are proposed: one utilizing
analytical data, which enables a computational speedup, and another based on data obtained
with 3D direct numerical simulations (DNS) using the boundary element method (BEM), with the
latter demonstrating the feasibility of this approach even in the absence of analytical solutions.
Validation against established literature benchmarks confirms the model’s accuracy in three sce-
narios: (i) ellipsoidal particles in the quasi-rigid limit in pipe flow, (ii) initially spherical particles
in shear flow, and (iii) initially ellipsoidal particles in shear flow. In all cases, the data-driven
surrogate approach achieves excellent agreement with reference results. This work establishes a
foundation for extending our data-driven approach to flow-induced deformations of soft particles
of more complex particle shapes, such as superellipsoids and other non-ellipsoidal geometries,
where no analytical traction expression is available.

1. Introduction

Particles suspended in flows are ubiquitous in both natural and industrial (petrochemical, wastewater, cement, or pharmaceutical
industries, [1,2]) contexts, ranging from biological entities (platelets in blood, pollen, sand) to environmental pollutants such as
microplastics and tire wear. The study of rigid spherical and non-spherical particle suspensions has garnered extensive attention,
with a rich body of analytical [3-7], experimental [8-12], and computational [13-20] research over the last century. However, the
dynamics of soft particles suspended in flows, which can deform due to the fluid-flow-induced tractions exerted on the particle surface,
remain less explored despite their significant presence in both engineered and natural systems. Examples of soft particles include man-
made entities such as liposomes and hydrogels (gaining significant importance in the medical field), as well as naturally occurring
biological cells and microorganisms (bacteria, algae). The limited research on soft particles, particularly in scenarios involving large
particle populations, has resulted in a gap in our understanding of these complex systems.
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1.1. State-of-the-art

Frohlich and Sack conducted some of the first investigations on soft initially spherical particles [21], where they examined Hookean
elastic particles in extensional flows. Subsequent studies, such as those by Cerf [22] and Goddard & Miller [23], studied soft initially
spherical particles with viscoelastic material behaviour in various flow conditions. In particular, Roscoe [24] was the first to explore
suspensions of viscoelastic micro-particles under conditions of finite deformation, extending the foundational work of Jeffery [71,
who studied rigid ellipsoidal particles. Roscoe’s findings indicated that soft initially spherical particles in shear flow evolve through
a series of ellipsoidal shapes to a steady-state ellipsoidal shape with a steady-state orientation. Nevertheless, the material exhibits
continuous deformation — a phenomenon known as tank-treading, [24,25]. The underlying assumption of affine deformation was
later validated through numerical simulations by Gao & Hue [25] and Gao et al. [26], who employed a discretized particle method
(ALE-FEM) and confirmed the predicted steady-state shapes and orientations of soft initially spherical particles in simple shear flow.

In later studies, Gao et al. [27] investigated soft initially ellipsoidal particles and observed two distinct dynamics regimes, i.e.,
tumbling (TU) and trembling (TR), which depend on the initial (i.e., stress-free) shape of the ellipsoid. These dynamical regimes
are also experimentally observable for example in the case of vesicles [27]. In a later work, Gao et al. [28] studied initially elliptic
particles (two-dimensional) in extensional flow and found that their steady-state shape (characterized by alignment of the particle’s
long axis with the extensional flow direction) differs from that of a similar particle in shear flow.

In the work of Sanagavarapu et al., [29] the authors pointed out that the theoretical framework of Gao et al. [25-28] is limited
as it is based on the upper convective time derivative of the Neo-Hooke constitutive relation to obtain the relation between stress
and strain rate and is thus not applicable for more general constitutive models (such as the Mooney-Rivlin constitutive model) as the
stress-rate might not solely depend on the strain rate. Consequently, the authors advocate rather to employing a relation between
total stress and total strain [29].

To summarize, the computational approaches available in the literature have primarily focused on initially spherical or ellipsoidal
soft particles under restrictive assumptions, which limit their applicability to more complex scenarios [30]. For example,the frame-
works developed by Gao et al. [25-28] and Sanagavarapu et al. [29] require (surface and volume) discretization, imposing significant
computational costs when studying large numbers of soft particles.

Recent advancements were presented in our previous work, see Wedel et al., [30] for soft initially spherical particles and [31] for
the extension to soft initially ellipsoid particles. In these works, we proposed a novel deformable particle approach that allows efficient
tracking of large populations of soft particles in arbitrary (global) flow conditions. This model leverages the pseudo-rigid body theory
[32] in combination with affine deformations and Lagrangian point-particle tracking, facilitating the study of the dynamics of soft
initially spherical and ellipsoidal particles without the computational burden associated with the state-of-the-art methods that rely
on particle surface (and volume) discretization.

As presented, the novel approach excellently replicates the behavior of soft initially spherical [25,26] as well as initially ellipsoidal
[27,29] particles as reported in the literature, however, at significantly reduced costs compared to the state-of-the-art models.

The speedup of the pseudo-rigid-body approach (using analytical traction expressions) relative to DNS simulations has been
analyzed in our previous work (Appendix F of [30]), where a detailed discussion of the model’s efficiency is provided. There, we
showed that particle-resolved simulations (BEM) require on the order of 10? s per particle per time step, rendering such an approach
infeasible for large particle numbers.! By contrast, our point-particle method requires only about 0.0003 s per particle per time step,
making simulations with millions of particles computationally feasible. Note that the primary computational expense of the novel
pseudo-rigid body approach lies in solving Newton iterations and evaluating the elliptic integrals involved in Roscoe’s analytical
traction expressions [24], which will be discussed in detail later.

1.2. Research gaps

To extend the novel pseudo-rigid body point-particle approach to particles of a more general stress-free shape, an obstacle arises
due to the lack of analytical solutions, such as those studied by Roscoe [24], for non-ellipsoidal particles in flows. Existing models rely
on parameters derived from expressions involving elliptical integrals, which are only available for a limited number of shapes, such
as ellipsoidal particles. These expressions are both cumbersome to implement and computationally intensive to evaluate, depending
on the employed framework.

As a result, having a Direct Numerical Simulation (DNS) database to efficiently determine the tractions exerted on the surface
of arbitrarily shaped particles has a high potential, particularly for particles where no analytical expressions are available, i.e., non-
ellipsoidal particles. However, since the tractions depend on both the particle shape and the local flow field, which is characterized by
a velocity gradient matrix with nine coefficients, constructing a DNS database that covers all possible configurations is impractical due
to the vast range of parameter variations (specifically for the velocity gradient tensor). If possible, a practical alternative is to identify
form coefficients that are independent of the flow field. This would allow the database to be generated without sampling specific
velocity gradient magnitudes, significantly reducing the parameter space (to only the particle shape parameters) while ensuring
applicability to arbitrary global flow conditions.

! These computations were carried out on a laptop running Windows 11 Pro (64-bit), equipped with an AMD Ryzen 7 5800H CPU (3.2 GHz, 8
cores/16 threads), 64 GB RAM, and an NVIDIA GeForce RTX 3060 Laptop GPU with 6 GB VRAM.

2
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1.3. Novelties

In this paper, we demonstrate the existence of form coefficients to determine the surface traction, which are independent of the
magnitude of the velocity gradient, significantly reducing the number of parameters that need to be considered. This reduction enables
the construction of a DNS database and, in turn, the generation of a data-driven surrogate approach. Specifically, we create a DNS
database to train a neural network (NN) to capture the deformation of a soft ellipsoidal body in viscous flow. While the approach is
initially developed for ellipsoidal particles, where analytical training data can be obtained and employed as a reference, it serves as
a foundational step toward ultimately capturing soft non-spherical particles, for which analytical traction expressions, exerted from
the flow on a soft particle, are unavailable.

2. Shape dynamics of a pseudo-rigid body

As a first step, we recall the shape dynamics of a pseudo-rigid body suspended in flows as presented in [30,31]. A brief overview of
the pseudo-rigid body dynamics as proposed by Cohen and Muncaster [32] is provided in Appendix A including barycentric dynamics
and the employed constitutive model.

To start with, consider a solid continuum body composed of physical points P, denoted by B = { P}. Let B, represent the reference
configuration (taken here as a unit sphere), 3, the material or stress-free configuration, and /3, the spatial or deformed configuration.
Additionally, let 5, pj and p; label the mass density (of the solid material) per unit volume in the reference configuration By, in the
material configuration 53, and the spatial configuration 5,, respectively. Furthermore, let =, £ and £ denote the relative reference,
material and spatial positions, respectively.

To simplify the notation in the following, we use superscripts and subscripts (s)°, (), and f, () to indicate whether a property
(superscript) or kinematic quantity (subscript) (s) pertains to the solid or the surrounding fluid, respectively, only when necessary to
avoid ambiguity.

The shape dynamics equation of a pseudo-rigid body immersed in flow reads as

A-@+Pvol(By))=M with M := [,® 5dA and A=F. (@)
0B,
In Eq. (1), P denotes the Piola stress, M labels the force dyad, 7, the traction (fluctuations), F the deformation gradient and A it’s
velocity. Note that M is in general a resultant of the dyadic moment of the bulk and surface force densities with =. However, in this
work, we assume body forces are constant over 3,, and consequently M depends solely on the traction (fluctuations) exerted by the
flow on the particle surface. The Euler tensor @ of the pseudo-rigid body expands as

@::/ Py EQ®EdV. (2)
By

Note that the resultant force dyad M using the traction (fluctuations) acting on the undeformed body (053,) relates to the force dyad
m as

M=m-F' with m=/ i, ® £da. 3
0B,

Taken together, we observe that to describe the shape dynamics of a pseudo-rigid body, we need to determine the force dyad, which
in turn depends on the traction (fluctuations). However, an analytical traction (fluctuations) expression is only available for a limited
number of shapes. For ellipsoidal bodies immersed in (locally) Stokes flow, for example, one can employ the prominent (Jeffery [7]
and) Roscoe [24] approach to determine 7,. A detailed representation of this result is provided in our previous work [30,31]. However,
evaluating this analytical expression is cumbersome as it involves various elliptic integrals, which are inconvenient to implement and
constitute significant computational effort.

An alternative approach involves employing dedicated DNS simulations in combination with neural networks. This novel data-
driven surrogate model allows to capture a large number of soft particles in viscous flow. The model bases on an affine deformations
assumption (as inherent to pseudo-rigid bodies [32]), see [30,31] and is combined with Lagrangian point-particle tracking. The data-
driven surrogate approach provides a foundational step to extend our novel soft particle tracking approach as presented in [30,31]
beyond initially ellipsoidal shapes as for non-ellipsoidal particles analytical expressions for the tractions exerted by the flow do not
exist. For convenience, we will next recall the analytical expressions available for tractions exerted on a soft (and rigid) initially
ellipsoidal body immersed in (locally) Stokes flow, i.e., the Jeffery and Roscoe traction expressions.

2.1. Jeffery traction

By analytically solving Stokes flow equations for an incompressible Newtonian fluid (characterized by constant density pf (note
that due to incompressibility we need not distinguish between ptf and p(f)), kinematic viscosity vf, and dynamic viscosity uf = pf vy in

the vicinity of an immersed ellipsoidal rigid body (particle), Jeffery [7] deduced the traction (fluctuation) ?: exerted by the flow on
the surface of the ellipsoidal rigid body in the format of

i = [~p(dp) i+ uf 5(dg.w)] - n. (4
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Here p and § are a spatially constant coefficient and a spatially constant (non-symmetric) and deviatoric second-order tensor, respec-
tively, n denotes the outwards pointing normal to the surface of the ellipsoid and i denotes the unit tensor. Note the dependencies
of coefficient j = j(d;) as well as the coefficients of § = 3(d;, w) on the fluid rate of deformation tensor d; and the relative spin (vor-
ticity) tensor w := w; — w, (with w, the spin tensor of the solid angular velocity vector). Eq. (4) is evaluated in the particle frame of
reference (pFoR) that is oriented along the ellipsoidal half axes. Since the above Jeffery traction (fluctuation) is linear in the outwards
pointing normal n to the surface of the ellipsoid, i.e. 7, = & - n, it can finally be expressed in terms of a spatially uniform (constant)
stress (further denoted as the Jeffery stress) &’ expanding as

& (dp, w) = —p(dp) i + ' 5(dp, w). (5)

Observe that &’ depends on the fluid rate of deformation tensor d; as well as the relative spin tensor w := w; — w,.

2.2. Jeffery-Roscoe traction

Roscoe [24] extended the analytical result of Jeffery [7] regarding the traction (fluctuation) #, exerted by Stokes flow on the
surface of an ellipsoidal rigid body to the case of an ellipsoidal deformable body. The final result reads

i, =[-pdi+uf[35(dw) +2d]] n. (6)

Observe that the Roscoe tractions are obtained using the coefficients j(d) and 3(d, w), which now depend on the relative rate of
deformation tensor d := d; — d, (recall also the previously already used definition of the relative spin (vorticity) tensor w : = w; — w,).
Here and below d and w, denote the rate of deformation tensor and the spin tensor for the deformable ellipsoid, i.e. dy :=I""
and w, := Izkw with [ the spatial velocity gradient of the solid. For a deformable ellipsoid in Stokes flow, the rate of deformation
tensor d proves spatially homogeneous as confirmed by, e.g., Gao et al. [26,27], a kinematic condition compliant with the above
assumptions of a pseudo-rigid body. Since the above Roscoe traction (fluctuation) is linear in the outwards pointing normal n to the
surface of the ellipsoid, i.e. ¥, = & - n, it can finally be expressed in terms of a spatially uniform (constant) stress & expanding as

&(d.dy, w)=—pd)i+ uf [5(d,w)+2d,] =& d,w)+2ufd,. @)

Observe that the term &' (d, w) = —p(d) i + uf3(d, w) is given by Jeffery [7] when evaluated in terms of the relative rate of defor-
mation tensor d := d; — d, (and, as already used before in the Jefferey expressions, the relative spin (vorticity) tensor w : = w; — w,).
To summarize, the Roscoe stress expands in a Jeffery-type stress (with relative input) and a correction term 2uf d,. The key steps in
the expression of the Roscoe traction (fluctuation) #,, [24], exerted on a deformable ellipsoid in a viscous flow are summarized in our
previous work see [30]. Finally, by using the Jeffery-Roscoe stress, see Eq. (7), we can express the force dyad m as

m = & vol(B,) = & (d, w) vol(B,) + 2uf d vol(B,). (8)

Again, we want to highlight that m is expressed as a function of the Jeffery stress &’ (d, w) with relative input (using the relative spin
rate d and vorticity rate w as input) as well as a correction term 2uf d_.

3. Shape and flow dependency of the Jeffery stress tensor for soft deformable particles

The following section presents the analytical form of the Jeffery-Roscoe stress &, which is used to determine the resultant force
dyad, m = & vol(B,) (see Eq. (8)), a quantity that plays a central role in characterizing the deformation of a pseudo-rigid body.

3.1. Standard (Jeffery and) Roscoe expressions

To understand the different contributions to & (and consequently to m), we start by detailing the standard (Jeffery and) Roscoe
expressions [30]. The Jeffery stress expands as

A H G°
& =—[p+auflagA+ B B+rClli-4u 6| H° B F| ©)
G F° C
with the parameters A, B, C expanding as
A=uvo[20gd], = fydy, — vy dis|, B =vg[-agdy, +2F5dy, - vy ds] and C = vo[-ajd), = fydy, +275d3] (10)

where we introduce the shape-dependent pre-factors 6, = 2/ [a, a, a3] and v = [af B + B} v, + 7 a(')]_l /6 for abbreviation purposes.
Furthermore, the parameters F, G, H and F°, G°, H° expand as

F=uv[fydyy —cFaguly|. F°=uv[yd,+ b afwhy]. 1)

G= vz[yod;3 — By w'B], G° = vz[aod;3+c2ﬂ8 w'B] R (12)

H =uv3[agd) — B>y wh |, H°=uvs|fod, +a*ydw] a3
3[%0 4y Yo Wyl > 3P0y Yo Wl

with shape-dependent pre-factors v7! = 2af [ fy + a3 7y, v;' = 24 B3 a3 vy + a3 ap] and v3' = 25 [ad &g + a3 .
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Let’s recall the definition of the shape-dependent parameters «;, §;, and y;. For this, we start by defining «, f, and y, as well as
ag, By, and yg as given in [33] for ellipsoidal particles. For ellipsoids with half axes a,, a, and a3 with a; > a, > a5 the parameters «,
By, and y, expand as [33]

® 1 « 1 ® 1
a =/ 2—dA’ bo =/ z—dA and 1y, =/ 2—d/\, (14)
0 [a1+A]A 0 [a2+A]A 0 [a3+A]A

with A? ;= [a% + A] [a% + A] [ag + A]. Furthermore, the parameters ag, §;, and y; expand as

oo 1 /°° 1 by 1
a° = . adA, po= - dA and y°= / - dA,
0 ./o (a2 + Al[a + A A 0 0 [a2+Al[d +A]A 0 o [&+Alla+A]A (15)
and the parameters a, f;, and y; read as

® A @ A ® A
a =/ —————da, 4 =/ ———L————dA and ; =/ ————da. (16)
0 [a2+A][a3+A]A 0 [a3+A][al+A]A 0 [a1+A][aZ+A]A
As shown in our previous work (see [31]) for prolate ellipsoids (a;, > a, = a3) and spheres (a; = a, = a3) the shape-dependent param-
eters degenerate to simple expressions. However, in the case of triaxial ellipsoidal particles (a; # a, # a3), the derived expressions
still contain elliptical integrals, which are cumbersome to implement and evaluate depending on the employed framework.

3.2. Rearranged (Jeffery and) Roscoe expressions

In this section, we show that the standard Jeffery-Roscoe stress expression introduced in Section 3.1 can be reformulated as a
superposition of distinct flow field contributions. For each flow field, the corresponding stress can be expressed as a product of a
shape-dependent form coefficient f and the respective flow field term, with f obtained either from dedicated DNS simulations or,
where available, from analytical expressions. This decomposition enables the training of the shape-dependent form coefficients using
a neural network independently of the flow field. Note that without such a separation, the shape factors would depend on the full
velocity-gradient tensor, whose nine components can vary significantly in magnitude across different applications. Including the
velocity gradient as input to the neural network is therefore undesirable, as it would lead to an impractically large dataset. Thus,
demonstrating that the stress can be decomposed in form and flow contributions is crucial, as it reduces the required dataset for the
neural network to one that depends only on the form, i.e., the particle shape, and is independent of the local flow field.

3.2.1. Superposition of flow fields

Recall that the shape-dependent parameters ag, B and Yor @S well as «, f,, and y,, and aS s ﬁ(‘;, and yS (see Egs. (14)—(16)) only
depend on the particle shape, i.e., the particle half axis a;, i = 1,2, 3, and are independent of the local flow conditions. Thus, we can
present the parameters A, B, C (see Eq. (10)) in an alternative form as

A= +2ed) —cydhy —cidl, =AY,
B=  —cd) +2cd), —c3d;; =B, a7
C= —¢d, —cd), +2cd}, =C,
with
¢ = vyag, e =vpf; and c3 = vy - 18)

Taken together, we find that the parameters A, B, C depend on the particle shape (via the parameter c;, i = 1,2, 3) and the diagonal
components of the deformation rate tensor coefficient dgy with i = 1,2,3 (no summation on ). To indicate the dependency on the
deformation rate, we will employ the notation A = A? (and similarly for B and C) in the following. Next, we can expand F, G, H
and F°, G°, H® (see Egs. (11)-(13)) as

/ 2 / d
F = vfydy,-vaseyw, = F +F’”,v
Fo=  uypdy,+uvaauwl, = F+ FY,
_ T o 7 _ d w

G = U270 d1,3 U2a12ﬁ0 w}3 = Gd +G", (19)

o _ o _ o, ow
G° = vyaydj;+ a5 fw; = G +G°Y,
H = wvyayd) —vayygwh =  H'+HY,
H° = uvfydy +uvsayygwh = H'+ H.

Observe that for example F depends on contributions from both the (off-diagonal) rate of the deformation tensor coefficients (ds,)
and the spin tensor coefficients (ws3,) which are scaled by a shape-dependent factor v, §, and —Ulaga(‘;, respectively. Observe that
similar relations hold for G, H, F°, G°, H®.

Taken together, we can eventually decompose &’ as

& =6°+6%+6Y, (20)
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with
AT 0 0
5¢=—[p+auflagA? +py B! +y,C¥]i—4u'65) 0 B! 0 2D
0 0o c?

which accounts for the diagonal tensor coefficients, while the off-diagonal tensor components arising from both shear and spin
contributions are accounted by

0 Hd God 0 HY G°w
5= —apts)|H? 0  FY| and &% =-4uls|H® 0  FY|. (22)
Gd Fod 0 G Fow 0

In summary, &' expands as a superposition of contributions from expansional flow (superscript ¢), deformation rate (superscript d),
and spin rate (superscript w).

3.2.2. Spin tensor contributions
Next, we first analyze the spin tensor stress contribution 6*. By employing the expressions presented in Eq. (19), 6' reads as

0 He G 0 e, Jtws
3 =—4utsp|HY 0 FY|=4f f:;'w:zl 0 fewl,|. (23)
w ow w w
G F 0 fwy fows, 0
This can be further decomposed as
0 fiw, o] [ o 0 filwl, 0 0 0
&Y = uf| frewl, 0 of+4] 0 0 0 |+4'fo 0 Flwh, |, (24)
0 0 0 fewy, 00 0 flw, 0

i.e., into a superposition of three main rotation contributions around the principal particle axes, where the parameters f‘.“’ with
i=1,2,...6 represent the corresponding non-dimensional form coefficients. These form coefficients expand as

fir= ad[oays]. = Aol 0= 48 [-vats].
fif= —Aalnap], = cAsl-uae], fi= 0 46 [ruae].

Together, we need to determine six form coefficients to describe the contribution of rotational flow to the force dyad exerted on
the particle and consequently to the shape dynamics. We observe that this can be achieved by choosing a specific flow field specified
by a velocity gradient only possessing two non-zero rotational contributions. Consequently, we employ the following non-dimensional
velocity gradients expanding in matrix form as

(25)

0 1 0 0 0 1 0 0 0
== 0 o =0 0 0| IF=|0 0 1| (26)
0 0 0 -1 0 0 0 -1 0

The resulting form coefficients are displayed depending on the respective particle shape (aspect ratios for ellipsoidal particles 4,
A, with 4; > 4,) in Fig. 1.

Note that results for 4, > A, are not included, since in the particle frame of reference (pFoR), which is aligned with the particle’s
long axis, this case corresponds to the particle being associated with one of the other two flow configurations (i.e., instead of the first
shear flow configuration, the case is then represented in the second or third configuration).

Across all three rotational-flow contributions, the computed form coefficients are strictly positive, but their magnitudes differ
substantially depending on both the coefficient index and the particle aspect ratios. For [;", the coefficients fl‘” and f2“ display
markedly different scales: while flw remains relatively small across the full range of (4, 4,), f;" increases sharply with particle
elongation and can exceed values of 60 for strongly prolate ellipsoids (e.g., 4, = 10, 4, = 1). A similar disparity is observed for 12,
where f3" is limited to values below 3, whereas . grows rapidly for elongated shapes, again reaching magnitudes above 60. Finally,

for [;’3, the coefficients /& and f/* exhibit a comparable difference, with fi* attaining values an order of magnitude larger than

fs" These observations emphasize two important points: (i) the anisotropic response of the particle to rotational flow is strongly
dependent on the aspect ratio, with certain coefficients becoming dominant for elongated geometries, and (ii) the relative weighting
of the coefficients within the considered rotational flow configuration varies significantly, indicating that different flow modes excite
distinct components of the stress response.

3.2.3. Shear tensor contributions
In a similar fashion to the spin tensor stress contribution, we may expand the deformation rate stress contribution &, which
results as

0  HY G 0 fid, 0 0o 0 Jjia, 0o 0 0
& =—autsp|HY 0 FY =4l fid), 0  ol+4f 0 0o 0 |+4f0o 0o  fld,| (27)
GY F* 0 0 0 0 fdy, 0 0 0 fid, 0
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Fig. 1. Visualization of the form coefficients f:."’ with i = 1, ... 6 resulting from rotational flow contributions ( [';‘ N [77 s L;”* ). The presented coefficients

are obtained using analytical expressions. Note that for display purposes, the orientation of the axis is not chosen identically for all presented form
coefficients.

i.e., a superposition of three main shear flow contributions around the principal particle axis, where f,.d with i = 1,2, ... 6 represent
the corresponding non-dimensional form coefficients. These form coefficients expand as

A
A

—48) [v3ap)» f; —460[v3 6], f}j= —46[varo]

—46y [v2], f5d= —48y [v15o], fg= =48y [v170] -

(28)

Taken together, we need to determine six form coefficients to describe shear flow contribution to the force dyad exerted on the
particle and consequently to the shape dynamics. We observe that this can be achieved conveniently by choosing a specific flow
field specified by a velocity gradient only possessing two non-zero shear contributions. Consequently, we employ the following three
non-dimensional velocity gradients expanding in matrix form as

0 1 0 0 0 1 0 0 0
=t o of =0 o of F=lo o 1] (29)
0 0 0 1 0 0 0 0

The analytically obtained form coefficients are shown in Fig. 2 as functions of the particle aspect ratios A, and 4,. As before,
only results with 4, > A, are included, since cases with 4, > 1, correspond to particles that are accounted for in one of the other two
shear-flow configurations.

In contrast to the coefficients obtained for the rotational-flow contributions (Fig. 1), the deformation-rate (shear-flow) coefficients
reveal a somewhat different distribution of magnitudes across the six form coefficients. Specifically, the trend for f;d and fS’" varies
strongly. While all (shear-flow) coefficients remain positive, they exhibit pronounced disparities in scale. For instance, f: 1“ and fé’
grow moderately with increasing elongation (similar to the rotational-flow coefficients) and reach values on the order of 20-25,
whereas f3 and f; rise much more strongly, exceeding 80 for highly prolate shapes (e.g., 4, = 10, 4, = 1). By contrast, f{ and f¢
remain comparatively small, saturating at values of about 4-5.

This strong deviation between shear-flow form coefficients is similar to what was observed in the rotational-flow case, but here
the contrast is even more pronounced: the dominant coefficients ( ff s f:f) scale strongly with particle elongation, whereas the weaker
coefficients remain nearly negligible in comparison. This highlights that shear-driven stresses are likewise to rotational-driven stresses
highly sensitive to particle anisotropy, with certain stress components being strongly amplified while others remain comparatively
minor.
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Fig. 2. Visualization of form coefficients f;d with i = 1, ... 6 resulting from shear flow contributions ( [‘;‘, [’;Z, [?‘). The presented coefficients are
obtained using analytical expressions. Note that for display purposes, the orientation of the axes is not chosen identically for all presented form

coefficients.

3.2.4. Expansional flow contributions
Lastly, we need to analyze 6° (see Eq. (21)), i.e., the expansional flow contribution to the Jeffery’s stress &’. This term expands as

AT 0 0
5 =—[p+4uflag A + B! +yyC|i-4u'60| 0 B 0
0 0o c¢
(30)
A0 0
=—pi—4uf[ag A9+ fy B + 1, Cli — 4l 0 B 0|
0 0o c¢
which can be rewritten as
& =-n
[ao + 8] A9 + By BY + v, C4 0 0
— 4uf 0 ag A9 + [y + 6o] BY + 7y C? 0
0 0 ay A + By B + [y + 8 C4 (31)
frdy + fid, + fds, 0 0
= —pi+uf 0 iy, + fsdy, + fedyy o
0 0 frdiy + Tgdy, + fodis

Note that the coefficient 6, = 2/[a, a, a;] possesses identical dimension as a, f, and 7, i.e. [m~|. Next, we consider the diagonal
terms separately, inserting the expressions presented in Eq. (17), and regrouping, we obtain

[ag + 8o A + oy BY + 7y C =

[@g + 80] [21d], — cadhy — c3diy] + o [—c1d], +2¢2d), — c3diy] + 70 [—e1d), — cyd), +2¢3d%,] =
d1, [[@o + 802 = Bo = vo]e1 + iy [~ a0 + 8o + 280 — vo]ea + dis [~ [0 + 8o] = Bo + 2r0]c3

fidy + fidy, + fidy,

(32)

and
ag A + [y + 6o] BY +7,C =
di, [2a0 = [Bo + 80] = role) + djy[—aq +2[Bo + 6] = vo)ea + di[=ao = [Bo + So] + 2r0] 3 = (33)
fidyy + f5dy + fids
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and
ag A + o BT + [rg + 6] €4 =
d| | [2a9 — By — [ro + 8o] et + dby [—atg + 280 — [1o + 80| | c2 + iy [—a0 — Bo + 2[ro + 6] e3 = (34)
fd}y + fgdy, + sy,

Collectively, this leads to the following analytical expressions for the form coefficients

F2 =[ao +80]2 = Bo — vo]er

fE=[=[ag + 8] + 280 — v0] ez »

ff=[ [ao + 8] = Bo + 2¥0)c3»

f:f =[2ay — [y + 8o] = vo]e1 -

f; =[—ay +2[By + 8] — o]z (35)
fg =[ o — [ﬁ0+50] +2y0]c;,

f&=[2a9 = o = [r0 + 6] ]c1 5

f§=[ a0+2ﬁ0 [y0+50”c2,

f(f :[—ao - po+ 2[;/0 + 50]]c3 .
Note that in the case of ellipsoidal particles, the parameters «, f,, and y, can be obtained according to Eq. (15), i.e., by solving
elliptical integrals. Furthermore, analysis of the above equations reveals that f3 = f¢, f5 = f¢, /2 = f.
This implies that, instead of nine form coefficients, only six need to be determined to characterize the contribution of extensional
flow to the force dyad acting on the particle and, consequently, to its shape dynamics. Let’s next consider three different sets of
expansional flow fields, with the corresponding non-dimensional velocity gradient expanding in matrix form as

10 0 -05 0 0 -05 0 0
=0 -05 0| [Z=]|0 1 o |, f; =] 0 -05 0. (36)
0 0 -05 0 0 -05 0 0 1

Consequently, we arrive at
fi=05f5-05f; CHOSEITR
fe-05f¢—05f¢ 55,01 =6,
fe=0578-057¢ 55,0 =6,

_().5f1" + fze - 0'5]9; =6 ([cz) =¢,

—05/¢+f¢-05f: = ~22(122) =5, 37)
—05/¢+/5-05fs =6 (1% =6
—0.5/¢—05f%+ f¢ _5“(1 =g,
—05f¢—05f¢+f2 =68, (L“*) =g,
=055 =05f5+ /5 =850 =¢-

Analyzing the above equations reveals that ¢; + ¢, + ¢; =0, ¢, + ¢5 + ¢ = 0, and ¢3 + ¢ + ¢y = 0. As a result, the final set of equations
involving [;3 (= ¢7, Gg. o) does not yield additional information, since these terms can be derived from the equations involving / le1

and [/ ‘2, i.e. ¢; = —¢, — ¢4. Therefore, the expressions based on L °3 are not required to determine the form coefficients f¢. This reduces
the system of equations to

fi=05f5-05fy  =&nU))=q.
fe-057¢-057¢ ) =6,
fi-05f5-05f5  =6u))=c.
—0.5f¢ + f£ - 0.5f¢ &“(gj}) =¢,
0.5+ f£ = 0.57¢ 522(1‘;2) =¢s,
-05f¢+f5-05f = &33(5}) =

We can now construct a linear system of the form A x = ¢, where x contains the unknown form coefficients f: °(i=1,273,4,5,9).
Upon doing so, it becomes evident that matrix A is not invertible, as the sum of each row is zero, which indicates a linear dependence
among the equations. Specifically, the matrix A has rank 5. As a result, without any further relation, it is not possible to directly
extract the analytical form coefficients ff from the DNS simulations. However, we find that due to the incompressibility condition
0 +10,+ lg3 = 0) imposed in the Jeffery solution, the exact values of f, ¢ are not required. Instead, a shifted set of values ff +Af¢
suffices for modeling the tractions on the particle surface, since a constant offset A f¢ does not affect the final traction outcome as
demonstrated in the following

(38)

LFE+ AL + LS+ AFNL, + L5+ AFLL, = LFE1 + Folhy + FRU 1+ AFCL + 1, + ] = (39)
— —— —— ——
i is s 0
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Fig. 3. Analytical force dyad coefficients ¢; — ¢, resulting from the two expansional flow configurations chosen (lel l ?). The presented coefficients
are obtained using analytical expressions. Note that for display purposes, the orientation of the axes is not chosen 1dentlcally for all presented form
coefficients.

Therefore, the stress (or traction) matrix remains invariant under a shift by a constant A f¢, meaning the stress state is unaffected.
This allows us to choose A f* arbitrarily and conveniently. In the following, we employ Af¢ = — /¢, as then f¢* = 0. With this choice,
we are able to solve for the (adjusted) form coefficients ff* (i = 1,...5). The resulting expressions for these are given below

ff* =2¢, — [89'2]/3 +263 +2¢4 — [49'5]/3’

fAe* =[4€1]/3— [8§21/3+2§3 + [8€4]/3 - [4€5]/3»

=[2¢,]/3 = [862] /3 + 263 + [4¢4] /3 — [4¢5] /3. (40)
=[261]/3 = [46,] /3 + 2¢5 + [464] /3 = [2¢5] /3.

[2€1]/3 -26, +2¢3+ [4€4]/3~

In the followmg, we first present the traction results ¢; obtained from Jeffery’s analytical expression [7], as illustrated in Fig. 3. This
approach is limited to ellipsoidal shapes, as analytical traction expressions are not available for more complex particle geometries.
As shown in Fig. 3, the form coefficients associated with expansional flow also exhibit considerable variation depending on particle
shape. Moreover, when comparing the magnitudes of these parameters, we observe significant differences among them. For instance,
the value of ¢; can reach values up to 60, while for example ¢, and ¢; stay below 10.

By inserting the coefficients ¢; (obtained from Eq. (38)) in Eq. (40), we obtain the expansional flow form coefficients ff*, which
are displayed in Fig. 4.

In contrast to the rotational- and shear-flow cases, where all coefficients were strictly positive, the expansional coefficients exhibit
both positive and negative values depending on the particle shape. The magnitudes of the expansional coefficients are generally
more moderate compared to the shear-driven coefficients, but still display significant differences across components. For instance,

* attains values exceeding 40 for elongated particles, whereas fzc* and f;* can reach values as low as —40 for the same shapes,
showing that negative stress contributions can occur depending on the component considered. By comparison, f:f* and f;* remain
smaller in magnitude, typically between 20 and 0.

Taken together, these results highlight a distinct difference compared to the rotational and shear cases: while those stresses showed
a systematic imbalance in magnitude across coefficients (with dominant and nearly negligible terms), the expansional coefficients
are characterized instead by strong sign asymmetry, with some components becoming strongly positive while others are equally
strongly negative. This emphasizes that expansional flow excites a qualitatively different response, where particle anisotropy not
only amplifies certain coefficients but can also change the sign of the contribution to the overall stress.

3.3. Direct numerical simulations

In the case of generic particles, analytical expressions for the form coefficients are not present. Consequently, we have to employ
DNS to obtain the tractions exerted on the particle. These DNS results can consequently be employed to obtain the form coefficients for
shear flow, rotational flow as well as expansional flow. Recall that for shear flow and rotational flow, we can obtain these coefficients
straightforwardly, while for expansional flow, we require Eq. (40).

10
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Fig. 4. Visualization of the form coefficients fAf* with i = 1,...5 resulting from expansional flow contributions. The presented coefficients are
obtained using analytical expressions.

3.3.1. Governing equations

Let us consider soft micro-particles that possess a particle size smaller than the Kolmogorov length scale of the flow. Typically,
this also results in a correspondingly small particle Stokes number (Stk), indicating that the particle trajectory closely follows the
flow. The Stokes number is obtained using

1 pS 2
Stk = ﬁﬁ [deq/nK] 5 (41)

where p8 and pf are the particle and fluid densities respectively, dq is the particle volume equivalent spherical diameter and #y is the
Kolmogorov length scale. It has been repeatedly shown that for a sufficiently small Stokes number, the particle closely follows the
fluid streamlines, without any significant deviations from the flow [34]. This, in turn, means that the relative flow velocity around a
particle is low and typically falls well into the viscous (Stokes) regime. As a result, we assume a steady-state incompressible flow of a
Newtonian fluid around a particle, at a very small particle Reynolds number, Re,, = ||ul|,d,/ vf < 1, where [|u]|, is the relative flow
velocity magnitude and vf is its kinematic viscosity. In this case, the advection term in the Navier-Stokes equations can be neglected,
which results in the creeping flow (Stokes) equations:

V.u=0, V-o+pfg=0. (42)

Here g is the gravitational acceleration and o is the Cauchy stress tensor defined as o = —Pi + 7, where P is the pressure, i the identity
ou: ou;

tensor, and 7 the viscous stress tensor. Considering a Newtonian fluid, we model the viscous stresses as 7;; = uf [a—’ + a—]] , where
X X;
J i

uf = VEpf. Since gravity is a conservative force, which can be written as the gradient of a gravitational potential ®, we can introduce
a modified pressure as p = P — pf®, where g = V®. With this, the final form of the Stokes equation reads

—Vp+ ufViu = 0. (43)

In general, the tractions on the particle boundary can now be computed using standard computational fluid dynamics (CFD)
solvers, such as the Finite Volume Method (FVM), the Boundary Element Method (BEM), or other suitable numerical approaches.
These methods enable evaluation of hydrodynamic forces and stresses acting on the particle surface, providing the necessary input for
training our NN. As discussed in our previous work [31], for solving Stokes flow problems, the BEM offers a substantial computational
advantage over the FVM (and other domain discretizing methods), primarily because the BEM requires discretization only of the
boundaries rather than the entire domain. This reduction leads to significantly faster simulations, especially when large domains are
required, making BEM particularly well-suited for parametric studies where a large number of simulations are necessary.

Taken together, our DNS simulations solve the boundary value problem of an ellipsoidal particle (locally) suspended in Stokes
flow. In this context, we employ our open-source BEM solver (available on Zenodo [35]). Details on the BEM approach are provided
in Appendix B.

3.3.2. Numerical setup
The computational domain used in the DNS study is presented in Fig. 5 and consists of a spherical domain of size D with the
particle (of size deq) positioned at its center.

11
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Domain

D

Fig. 5. Sketch of the BEM domain consisting of a spherical domain with the particle under consideration positioned in the centre of the spherical
domain. The domain is of size D and the particle volume-equivalent diameter is denoted as d,,. Note that the particle is scaled for display purposes.
The actual size of the particle size d., is 1000 times smaller than the size of the domain D. The boundary condition on the surface of the outer
sphere is a constant velocity that is prescribed in such a way that the desired velocity gradient is obtained (rotational: [;’" s L;’Z, [?3, shear: Ldf' , Ldfz,
[}3, expansional: ff' s [;2 ), while a no-slip condition is imposed on the particle surface.

Note that in Fig. 5 the particle size is strongly enlarged for display purposes. As reported by Strakl et al. [36], for creeping flow
around a sphere, using a domain of size 1024 d,, reduces the influence of the domain boundaries to approximately 0.1 % compared
to about 1% achieved with the domains used in [37,38]. With this in mind, we employ a spherical domain to particle size ratio of
D/d,, ~ 1000.

Dirichlet boundary conditions are imposed on both the particle surface and the outer spherical boundary of the domain. The
particle velocity is set to zero, while the velocity at the outer boundary is prescribed in such a way that the desired velocity gradient

is obtained. The velocity gradient is chosen such that it represents a specific flow configuration (rotational: [?‘ s [j“,’z, [;’3, shear: _df‘ s [dz,

[?, expansional: [efl s f}z). At the particle surface, a no-slip velocity boundary condition is prescribed. The boundary tractions at the
particle surface are then computed by the BEM algorithm. For convenience, the simulations are set up in a non-dimensional manner
wf=1, deg =1). To identify the form coefficients for the shear flow, the rotational flow, and the expansional flow, we require the
following set of DNS studies for one specific particle shape:

+ three rotational flow fields (", 2, I'°),

o three shear flow fields ([;‘ , 52, ),

« two expansion flow fields (gj}, gj?).

Taken together, this adds up to a total of 8 = 3 + 3 + 2 simulations for each selected particle shape to determine all relevant form
coefficients.

3.3.3. Mesh study and validation

To validate the proposed algorithm and assess its accuracy, we first examine an ellipsoidal particle, varying the axial ratio 4,.
Recall that for ellipsoids, Jeffery [7] analytically derived the tractions on the particle surface under creeping flow conditions. Ravnik
et al. [39] later showed that these expressions are only valid for particles whose size is much smaller than the Kolmogorov length
scale 5. The specific formulas for the traction, as originally provided by Jeffery [7], are detailed in Section 2.1. In the following, we
investigate a spherical particle (4; = 1, 4, = 1) and three prolate particles (4, = 2.5, 4; =5 and 4, =7.5).

It is important to note that particle surface discretization (as discussed in the following) is only required to obtain the traction
results to train the NN, i.e., in the offline phase. The online calculation of the particle deformation is meshless and thus highly efficient.
In the offline calculation, the domain discretization is carried out in two steps. First, the outer boundary of the domain (the outer
sphere) is meshed separately, using approximately 300 elements — this remains constant across all cases. The particle surface itself
is then meshed, with four different mesh settings, which result in the mesh statistics as presented in Table 1. Note that the meshing
procedure is automated and consists of an in-house Python STL generator, a subsequent remeshing step in OpenFOAM (blockMesh,
snappyHexMesh), followed by a conversion to Gmsh, which can then be employed in the in-house BEM code. In OpenFOAM, the
different meshes are generated by employing an identical background mesh, where the number of background mesh elements is
refined with a coefficient of 2!/? for each increasing MeshID. Furthermore, we employ an increased refinement level at mesh regions,
where the angle between adjacent local surface normals exceeds 60°. This enables a refinement of strong surface gradients, which is
especially relevant for strongly elongated and oblate particles.
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Table 1
Particle surface mesh statistics: Number of elements
per particle surface for each investigated MeshID.

Shape / MeshID 0 1 2 3

=1 =1 278 486 822 1218
=25 A=1 382 514 834 1338
A=5  AL=1 822 826 1698 1722
A=75 A,=1 806 996 1420 2002
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Fig. 6. Resulting surface meshes for a spherical particle and three prolate particles (4, = 2.5, 5, 7.5 from left to right). MeshIDs from top to bottom:
0,1,2,3.

As presented in Table 1, the number of particle surface elements strongly depends on the particle shape under consideration. We
find that oblate particles, in general, result in a larger number of surface elements than their prolate counterparts. This is due to the
larger surface area of an oblate ellipsoid compared to a prolate ellipsoid with identical A,. Taken together, the number of elements
increases with increasing aspect ratio and increasing MeshID. Exemplarily, the resulting meshes for the spherical particle and three
prolate particles (4, = 2.5, 5, 7.5) are displayed in Fig. 6.

To choose an appropriate mesh resolution, we compare the resulting DNS traction for a certain MeshID to the analytically obtained
tractions, as given by Jeffery [7]. This is done by employing the normalized error E, which is obtained for expansional, shear, and
rotational form coefficients as follows

>

_ | AieDNS _fiel . E,w | iDNS — iwl . Eid lfrDNS fidl (44)
2 ~g12
VEL 7] VI 1A 1A

where f NS f, bns and f bns represent the DNS form coefficients and fAf fi'” and f,.d represent the corresponding analytical values.
Note that each rotatlonal and shear flow configuration yields two form coefficients, whereas each expansional flow configuration
yields three form coefficients.

Observe that the numerator (i.e. | f DNS — ff|) in Eq. (44) represents the absolute error between the predicted and analytical
values. The denominator (\/T) normahzes the absolute error by computing the Euclidean norm (magnitude) of the traction tensor,
ensuring that the errors are scaled relative to the overall magnitude of the obtained traction tensor. This normalization provides a
fair comparison as it ensures that the errors are interpreted in a way that considers the overall scale of the traction tensor for each
respective flow configuration. Table 2 presents the accuracy of the DNS simulation for the four different meshes (see Table 1) by
providing the average E for shear-flow (E?), rotational-flow (E*) and expansional flow é"), which are obtained using

Ev= [EF+EY+EX|/3
E‘=  [E{+EJ+ES)/3 (45)
Ee= [E¢ + ES)/2.
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Table 2

Mesh study: Resulting deviation ([%]) between the DNS form coefficients and the analytical form coeffi-
cients. The error is evaluated as the mean of the specific flow configurations, i.e., shear-flow (E“), rotational-
flow (E"), and expansional flow (£°) for each MeshID (MID).

Shape =1 A =1 =25 A =1 =5 =1 A =75 Ay=1

Error [%)] Ew B4 Ee Ew Bl Ee Ew E? Ee Ew E9 E°
0 220 220 171 173 183 1.64 155 158 149 160 147 098

MID 1 133 131 104 167 1701 134 126 130 110 137 129 097
2 083 081 066 106 109 0928 093 094 092 099 096 077
3 058 057 045 068 070 070 074 075 084 070 069 067

As observed, the error in predicting the form coefficients decreases with increasing mesh refinement. Furthermore, we find that M2
and M3 mesh consistently provide errors of ~ 1 %. Consequently, we employ the M2 mesh discretization for particles up to 4, = 7.5,
and for particles with 4, > 7.5, we employ the finer M3 mesh discretization.

4. Neural network for modeling soft particles in flows

To model flow-induced deformations of soft particles of more complex particle shapes, in the following, we present a neural
network architecture designed to predict the form coefficients of the traction exerted on a micro-particle suspended in viscous flows
(locally Stokes flow). In this work, we employ a neural network rather than polynomial fitting (as used in Strakl et al. [36]). Polynomial
regression becomes increasingly impractical when dealing with multiple outputs and complex nonlinear relationships, as higher-order
models suffer from numerical instability, oscillatory behavior, and overfitting tendencies [40]. Although it can capture simple trends,
polynomial fitting is highly sensitive to noise and lacks flexibility when approximating irregular or non-smooth functions [41]. Neural
networks provide a more suitable alternative: they naturally map a small number of inputs to many outputs without requiring separate
models or complex multivariate expansions [41], and they are universal function approximators capable of capturing nonlinear
dependencies without explicitly defined basis functions [42]. Since our training data also originates from DNS simulations, which may
include mesh-induced irregularities, the generalization ability of neural networks makes them more robust to noise than polynomial
models [43]. For these reasons, we adopt a neural network to capture both analytical and DNS-derived data in a compact and
generalizable form.

The data feeding the neural networks can be generated in two ways:

¢ (a) using analytical expressions (only available for a limited number of shapes such as spheres and ellipsoids),
¢ (b) using dedicated DNS simulations.

For the problem under consideration, the inputs are given by the particle shape parameters 4, and 4,, while the outputs correspond
to the form coefficients associated with each flow field contribution (expansional, rotational, and shear). These coefficients quantify
the scaling of the respective flow field influences on the resulting tractions. The number of traction form coefficients depends on the
current chosen flow field configuration. In the case of an expansional flow configuration, we have to determine three form coefficients;
for the shear and rotational flow configurations, we require only two for each.

In the context of this study, we found that a NN model consisting of an input layer with 2 neurons (4,, 4,), followed by four
fully connected hidden layers with 8, 8, 8, and 6 neurons, respectively, proved to be sufficient. Furthermore, we employ the Tanh
activation function for the first three hidden layers and the Sigmoid activation function for the fourth hidden layer to introduce
non-linearity and improve learning dynamics. The output layer comprises either two (for shear and rotational flow fields) or three
(for expansional flow fields) neurons without bias, reflecting the final prediction targets. The employed NN architecture is sketched
in Fig. 7. The network is trained using the AdamW optimizer with a learning rate of 0.01, and a learning rate scheduler is applied
to reduce the learning rate by a coefficient of 0.90 every 1000 steps. For a NN that is supposed to perform regression, the Mean
Squared Error (MSE) of the predicted output with respect to the expected value is a common loss function choice [44]. It computes
the average squared difference between the predicted values and the target values. Given that the network has three output neurons
(as in the case of expansional flow), the loss function based on the MSE is defined as

Np

L= L3 =]+ -]+ [f - (46)

P =l

where

. f“ R ﬁz f,ﬁ are the predicted outputs of the neural network for the ith input sample, corresponding to the three (or two) output
neurons.
. fl*l fi*z, f,.*3 are the reference or target values for the ith input sample, corresponding to the three (or two) output neurons.

Fig. 7 sketches the effective total NN structure to predict all form coefficients necessary to model the tractions exerted on a
soft micro-particle (locally) suspended in Stokes flows. Observe that our NN does not explicitly impose physics-based constraints.
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Fig. 7. Structure of the employed fully connected neural network model consisting of two input neurons, 4 hidden layers of size 8 x 8 x 8 x 6 and
three output neurons for each considered expansional flow configuration and two output neurons for each shear and rotational flow configuration.
For the problem under consideration, the inputs are given by the particle shape parameters 4, and 4,, while the outputs correspond to the form
coefficients associated with each flow field contribution (expansional, rotational, and shear). These coefficients quantify the scaling of the respective
flow field influences on the resulting tractions.

However, the construction of the shape factors (as described in Section 3) inherently incorporates key physical properties such as
symmetry and related invariances. Since the neural network operates on these derived factors, it cannot violate these constraints. In
this way, the physics-awareness is embedded indirectly through the choice of input representation.

The k-fold cross-validation is particularly useful when a precise and robust model is required. This technique involves performing
cross-validation k times while shuffling the data before each split. The final performance score is obtained by averaging the results of
all iterations. In the scope of this study, we employ k = 10. The k-fold cross-validation allows to evaluate the model variance, which
is a measure of the spread of the accuracy of the obtained NN. It also shows how strongly the NN accuracy depends on the training
dataset (10 % of the total dataset) that was randomly selected, as it indicates how far the specific model errors deviate from the mean
model error. The model error variance is obtained using

k
> (k- @)
i=1

=

2 _
O'e =
with mean u

k
1
M=EZL,~. (48)

i=1
4.1. Neural network from analytical results

To start with, a NN is trained from the analytical form coefficients as presented in Egs. (25),(28),(35) in combination with the
oy, Po. 7o obtained as described in Eq. (15) for ellipsoidal particles. Using this expression, a dataset of form coefficients can be
obtained. In the following, we investigate the form coefficients in a range of 4, € [1, 10]and 4, € [1, /11] using three different dataset
sizes:

e I.: A}; = 0.01 leading to 406,351 analytical data points to train the NN.

e IL.: 10 % of dataset I. leading to 40, 635 analytical data points to train the NN.
o III.: 1 % of dataset I. leading to 4063 analytical data points to train the NN.

e IV.: 0.1 % of dataset I. leading to 406 analytical data points to train the NN.

The accuracy of the NN for rotational flow, shear flow, and expansional flow form coefficients is presented for each dataset using a
k-fold test, where we select k = 10.

First, the minimum and average prediction errors (MSE), along with the error variance, are reported for the NN tasked with
estimating form coefficients of rotational flow. These results are summarized in Table 3. As shown in Table 3, the average error across
the k-fold evaluation for the coarsest dataset with 406 data points (/V.) in the case of rotational form coefficients is € < 1.2 X 1079,
with an error variance of 6, < 2.4 x 1072, For the next finer dataset with 4063 samples (I11.), the mean error improves by nearly an
order of magnitude to € < 1.3 x 1077, with a variance of o, <35x% 10714, Increasing the dataset size further to 40635 samples (/1. ) and
406351 samples (I.) yields only slight improvements, with the differences between these finest cases being minimal. This indicates
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Table 3

Neural network error metrics of form coefficients for rotational flow for four
different dataset sizes (1. — IV.). The table presents the minimum MSE (e,,;,),
mean MSE (€), and error variance (c,) of the k-fold test with k = 10. Note
that f“ represents the mean error of all f,."’.

Metric fie, f fo, fio o, fe e
.  3.3186e-08 2.6216¢-08 2.7518¢-08 2.8973e-08
I é 9.1919e-08 6.0399¢-08 8.2552e-08 7.829e-08
o, 2.1895e-15 4.8498e-16 3.5733e-15 2.0826e-15
e 4.8006e-08 2.7762¢-08 1.9432¢-08 3.1733e-08
1L é 8.9313e-08 7.3717e-08 8.0856e-08 8.1295e-08
[ 2.2644e-15 2.1564e-15 1.3389%e-15 1.9199e-15
€min 4.5151e-08 2.5106e-08 4.4917e-08 3.8391e-08
IIL é 1.1222e-07 7.3494e-08 2.1723e-07 1.3431e-07
o, 2.2799e-15 1.0979e-15 1.0302e-13 3.5466e-14

€min 1.053684e-07 7.501887e-08 2.024393e-07 1.2761e-07
1.731615e-07 2.125942e-06 1.393763e-06 1.2310e-06
1.591975e-15 3.16152e-12 3.962276e-12 2.3751e-12

Table 4

Neural network error metrics of form coefficients for shear flow for four differ-
ent dataset sizes (/. — IV.). The table presents the minimum MSE (¢,,;,), mean
MSE (¢é), and error variance (o,) of the k-fold test with k = 10. Note that /¢
represents the mean error of all fi" .

Metric VY £ 7 747 7
€min 4.9401e-08 2.9036e-08 3.2981e-08 3.7139e-08
L 3 1.138e-07 9.4287e-08 6.3643e-08 9.0577e-08
o, 3.5266e-15 4.3602e-15 7.0244e-16 2.8631e-15
€min 3.96e-08 3.2743e-08 2.9124e-08 3.3822e-08
1L € 1.015e-07 1.0143e-07 6.705e-08 8.9993e-08
o, 2.3293e-15 1.9793e-14 8.1258e-16 7.645e-15
€min 3.5256e-08 3.9858e-08 1.9224e-08 3.1446e-08
1L € 9.1839%¢-08 1.7298e-07 1.7471e-07 1.4651e-07
o, 1.4394e-15 9.3606e-14 6.304e-14 5.2695e-14

o

)

min 2.235097e-07 9.058544e-07 1.967025e-07 4.4202e-07
7.51529e-07 1.2138616e-06 4.397814e-07 8.0172e-07
7.107199e-13 7.920558e-14 3.068257e-14 2.7354e-13

=
™

K]

that dataset I11. already provides sufficiently accurate performance of the neural network for rotational form coefficients, and further
increasing the number of training samples leads to only diminishing improvement.

Second, the NN trained to predict the form coefficients for shear flow is analyzed. The minimum and average prediction errors,
as well as the error variances across the k-fold evaluation, are summarized in Table 4. Once again, the results demonstrate that the
overall prediction accuracy is high for datasets I.-III., with average errors consistently on the order of 1 x 1077 to 9 x 107, Importantly,
we observe that the dataset III. (4063 samples) already yields sufficiently small errors, with only minor deviations when compared
to the larger datasets, i.e., II. (40,635 samples) and I. (406,350 samples). This indicates that further enlarging the dataset beyond III.
does not significantly improve the predictive capability of the NN. By contrast, we find that the dataset IV. (406 samples) exhibits
a substantially larger mean error and variance (¢ ~ 8 X 1077 and o, ~3X 10713) compared to III. (¢ ~ 1.5x 1077 and o, 85X 10714,
underlining that this sample size (IV.) might be insufficient to achieve reliable accuracy. Taken together, the results indicate that a
dataset size of 4063 samples is sufficient to train the NN for predicting the form coefficients in shear flow.

Third, the NN tasked with predicting form coefficients of expansional flow is discussed. The corresponding minimum and average
prediction errors, along with the error variance, are summarized in Table 5. We observe that the average error across the k-fold
evaluation is slightly higher for all data sets compared to the shear and rotational flow form coefficients. Nevertheless, they remain
sufficiently low for all studied datasets to confirm the robustness of the NN in accurately predicting the shear flow form coefficients.

Fig. 8 presents the parity plots illustrating the correspondence between the NN’s predicted values (NN with the minimum error)
and the true (analytical) form coefficients for the selected training dataset (111.). Ideally, the predictions would lie along the diagonal,
indicating agreement between the model outputs and the analytical data. As displayed in Fig. 8 (a—c), we observe a close alignment of
data points along the diagonal, for all flow field configurations studied, indicating high predictive accuracy of the NN. Furthermore,
we observe a clear difference in the magnitude of the form coefficients, which are presented using different colors.
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Table 5

Neural network error metrics of form coefficients for expan-
sional flow for four different dataset sizes (1. — IV.). The
table presents the minimum MSE (e,;,), mean MSE (¢), and
error variance (o,) of the k-fold test with k& = 10. Note that
f¢ represents the mean error of all ff.

Metric fo fi 72 fo e e Fe
€mn  6.89e-08 7.93e-08 7.41e-08

I 3 1.076e-07 1.358e-07 1.217e-07
o, 1.1295e-15 3.8656e-15 2.4976e-15
€mn  8.13e-08 8.44e-08 8.285e-08

1L é 1.444e-07 1.262e-07 1.353e-07
o, 3.9824e-15 1.3538e-15 2.6681e-15
€mn  8.81e-08 5.8e-08 7.305e-08

11 € 8.797e-07 3.021e-07 5.909e-07
o, 1.6199e-12 1.8005e-13 8.9998e-13

)

min 4.352472e-07 2.488161e-07 3.4203e-07
1.717383e-06 5.038082e-07 1.1106e-06
A 2.943573e-12 4.295154e-14 1.4933e-12
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Fig. 8. NN prediction accuracy for form coefficients for different flow field configurations ((a), (b), and (c)). The predicted values are displayed
over the analytically obtained target values. Form coefficients: ® /* ® /* ® f* @ f* © f& @ f¢ witha=w,d,e.

4.2. Neural network from DNS simulations

Next, a NN is derived from the form coefficients obtained using direct numerical simulations (DNS), specifically by solving the
boundary value problem for an ellipsoidal particle suspended in a locally Stokesian flow by BEM. Using the simulation results for the
eight different flow configurations (3x shear, 3x rotational, 2x expansional flow), a dataset of form coefficients can be constructed.
The shape space is discretized in the range of 4, € [1, 10] and 4, € [1, /11] with A4 = 0.1, leading to 4186 data points to train the NN.
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Table 6
Neural network error metrics of form coeffi-
cients for rotational flow obtained from DNS

data.
Rotational 1, f3 fe, fre fe, fe
Emin 3.32e-07  4.07¢-07  6.39e-07
é 4.26e-07 6.88e-07 7.43e-07
o, 4.21e-15 3.46e-15 5.22e-15
Table 7

Neural network error metrics of form coeffi-
cients for shear flow obtained from DNS data.

Shear 1 7 N R

3.89e-07 1.54e-06 2.03e-06
4.70e-07 1.82e-06 2.23e-06
1.9e-15 2.72e-14 3.08e-14

emm

a

Q

Table 8

Neural network error metrics of form
coefficients for expansional flow ob-
tained from DNS data.

Expansional  f{, f5, fi  fi L f¢

1.59e-05 2.84e-05
2.11e-05 4.69e-05
8.07e-12 1.06e-10

€min

a o

The NN architecture remains identical to the setup used with analytical data: it consists of two input neurons (4;, 4,), four fully
connected layers with 8, 8, 8, and 6 neurons, and an output layer comprising either 2 neurons for shear and rotational flow, or 3
neurons for expansional flow.

Note that when training the NN using form coefficients obtained from DNS instead of analytical data, we observe a slight increase
in prediction error, see Tables 6-8. While the overall average errors remain very small and well within acceptable limits, the most
pronounced increase occurs in the prediction of the form coefficients for expansional flow (see Table 8). In contrast, the errors
associated with shear and rotational flow parameters (see Tables 6 and 7) show only a marginal increase. These results suggest that,
although switching from analytical to DNS data (as required for particles without available analytical traction expressions) introduces
some additional deviations due to mesh discretization and numerical accuracy, the NN still maintains high predictive accuracy across
all flow types as shown in Fig. 9. Consequently, the proposed approach for predicting surface tractions proves effective and can be
confidently applied to develop NN models for simulating soft as well as rigid particles suspended in flows.

5. Demonstrative examples

In the following, we validate our NN approach to model soft deformable particles in flows by comparing it to numerical studies
from the literature for soft initially spherical and ellipsoidal particles. Throughout the demonstrative examples (unless explicitly stated
otherwise), the characteristic scales for nondimensionalization are the length scale d,, (initial volume-equivalent particle diameter),
the time scale 7! (inverse fluid shear-rate) and the fluid pressure/stress scale uf 7. Here, uf denotes the dynamic viscosity of the fluid.
In the following, we use the Capillary number Ca to quantify the softness of the particle, which represents the ratio of the viscous
forces in the fluid to the elastic forces in the particle, [26] as

f .
Ca= 21, (49)
Us
with u® denoting the particle shear modulus. Note that a larger Capillary number Ca is associated with a softer particle [26]. Further-
more, we can define the particle shear Reynolds number using the fluid shear rate y as
)
T e
Re, = —, (50)
7 of
where vf denotes the kinematic viscosity of the fluid. Note that a key assumption of the Jeffery-Roscoe solution is creeping flow with
Re; < 1 locally.

To characterize the deformation of the particles, we introduce the Taylor deformation parameter 7, which serves as a standard

measure of droplet and vesicle deformation, as noted by Stone et al., [45]. The deformation parameter can be expressed in terms of
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the semi-axis ratios of the particle, using £, = a,/a; and ¢, = a3/a; (recall that a3 < a, < a;), as [26]

1-¢,
_ , 51
a+a, 1+¢, (51

s G —a,
=

According to Gao et al., [26], for less soft particles, i.e. # < 0.2, one can assume a linear relation between ¢ and Ca (¢ ~ Ca). However,
as the particles exhibit increased softness (Ca ,”), a non-linear relationship exists between Ca and #, [26]. In the limit Ca — oo, the
elastic shear modulus x* becomes negligible compared to the viscous stresses, and the particle deforms without elastic resistance. In
this regime, # approaches 1, corresponding to the extreme case where the major axis a; extends infinitely larger than the minor axis
a,. Thus, Z = 1 represents an “infinitely soft” particle, i.e., a body that offers no resistance to elongation and behaves as a super-soft
entity, consistent with the observations in Gao et al. [26].

In addition, the Stokes number, which is defined as the ratio of the characteristic particle response time 75 to a characteristic time
of the flow <f, for a particle with volume equivalent sphere diameter deq, reads as

2 u
T _ pS Yeq
Stk = — = — . 52
of  pf 18L (52)
with the characteristic time scales defined as follows:
s d2
s=r e f L (53)
pf 18vf U

where L and U denote a characteristic length and velocity of the flow problem, respectively. Note that we neglect the pressure
gradient and added mass force as we assume that pS > pf and/or Stk < 1.

5.1. Quasi-rigid body limit

As a first demonstrative example, we investigate prolate ellipsoids suspended in a laminar pipe flow. The setup is consistent
with the setup employed in Wedel et al. [19], which builds upon the study by Tian et al. [46]. The circular channel has diameter of
D = 4.2mm and a mean velocity of # = 0.485 m/s [19]. The studied prolate ellipsoids have an aspect ratio of A, = 1.5, 3, 7, with a semi-
minor axis of a; = 0.5 um and density of p$ = 2560kg/m?>. The fluid density is set to pf = 1.208 kg/m>, and the kinematic viscosity is
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Fig. 10. Direction cosines cos(a,) and cos(a,) of the particle long axis with the streamwise and gravitational direction, respectively. The considered
prolate ellipsoids possess 4, = 1.5, 3, 7 and are suspended in a laminar pipe flow. Displayed data: mm Wedel et al. [19], == present model (NN-An.),

== present model (NN-DNS).

vf = 1.491 x 107> m? /s, resulting in a Reynolds number of Re = 137. Notably, pS > pf. Additionally, the characteristic particle response
time is 75 = 0.046 ms, which corresponds to a Stokes number of Stk = 0.01. The particle is initially positioned at x,(0) = —1.65 mm in
the e, — e, plane, with an initial orientation of ¢; = —90°, ¢, = 0°, ¢3 = 0°, and initial velocity and angular velocity set to zero. At
the initial position x(0), the flow vorticity is w; = 726 s~

In this study, we investigate the novel soft particle tracking model in the rigid particles limit by choosing Ca — 0. In the following,
we compare the direction cosines of the particle’s long axis with the streamwise and gravitational direction for prolate ellipsoids with
aspect ratios A; = 1.5, 3, and 7 suspended in laminar pipe flow. Results for rigid particles (see Wedel et al. [19]) are contrasted with
those for quasi-rigid particles, obtained using the NN trained either on analytical or on DNS data.

Fig. 10 shows time series comparisons of direction cosines with the streamwise (cos(a,)) and gravitational (cos(a,)) direction for
different values of 4, illustrating the accuracy of the NN models in the limit of Ca — 0 (quasi-rigid). For 4; = 1.5 (a,b), the results
demonstrate excellent agreement between the reference and computed solutions. Similarly, for 4, = 3 (c,d), the match remains highly
accurate, maintaining close alignment throughout the time window. Also for increased elongated particles, i.e. 4, = 7 (e,f), only minor
discrepancies arise, indicating the robustness and fidelity of the approach across a range of ellipsoidal particles. Consequently, we

consider the novel NN soft particle tracking model validated in the limit of Ca — 0.
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5.2. Shape dynamics of soft spherical particles in simple shear flow

The next validation step involves the study of an elastic (neo-Hookean) initially spherical particle suspended in a simple shear flow
(It 1, = 7). Note that the fluid rate of deformation tensor d; has two non-zero components, d,; = d,;, likewise to the fluid vorticity
Wy = —w,,. As a reference, we draw on the results of Gao et al., [26], who studied soft initially spherical particles subject to simple
shear flow. As the authors report, they achieved excellent agreement with the reported results of Roscoe [24]. However, to achieve
comparability with the study of Roscoe, Gao et al. neglected the viscous contribution present in Roscoe’s solution.

5.2.1. Steady-state particle deformation

Initially, we investigate the steady-state results of the particle deformation, i.e. the Taylor deformation parameter 7, the particle
half axis ratio parameters ¢, ¢,, and the particle orientation ¢. As presented in Fig. 11 (a,b), both NN approaches (NN-DNS, NN-An.)
are able to excellently reproduce the steady-state particle deformation parameter Z as well as the particle half axis ratio parameters
¢\, ¢, as reported by Gao et al., [24]. Observe that no notable discrepancies between NN-DNS and NN-An. are observed, indicating
that the DNS approach to model the tractions exerted on the particle surface is sufficiently accurate.

Next, we examine the steady-state orientation of the particle, as shown in Fig. 12. The results demonstrate that the proposed
NN models accurately capture the steady-state orientation reported by Gao et al. [26], achieving excellent agreement. Again the
deviations between NN-DNS and NN-An. are negligible.

It is known that initially spherical soft particles suspended in simple shear flow experience the so-called tank-treading dynamics
[26,47]. Tank-treading motion is characterized by a soft particle maintaining a steady-state shape and orientation while its material
continues to deform. Consequently, we can analyse the relation between particle softness (Ca) and the material spin tensor w,, i.e.
the tank-treading frequency. Fig. 12 (b) illustrates this relationship. As observed, we obtain in the quasi-rigid particle limit (Ca — 0),
a tank-treading frequency equal to half the flow vorticity (7/2). As particle deformability increases, a nonlinear rise in tank-treading
frequency is observed. Note that for Ca > 0.8 (towards super soft particles), we observe slightly higher deviations for the NN-DNS

0.8
0.6
Loa4
<~
0.2
0 : 0 ‘
0 0.5 1 0 0.5 1
Ca [] Ca []
(a) Steady-state deformation parameter £ (b) Steady-state particle half axis ratios ¢, £,

Fig. 11. Steady-state particle deformation parameter # and aspect ratios 7, = a,/a, and #, = a;/a, as a function of the Capillary number Ca: mm Gao
et al.,[26]. 7 and ?,, @ = 1,2 results obtained with: O Roscoe’s analytical expressions, 4 present model (NN-DNS), ® present model (NN-An.).
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Fig. 12. Steady-state particle orientation ¢ and normalised tank-treading frequency |i;| = |w,5|/7 as a function of the Capillary number Ca.
Literature reference results: mm Gao et al., [26]. Results obtained with: O Roscoe’s analytical expressions, € present model (NN-DNS), B present
model (NN-An.).
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than the NN-An compared to the results obtained using Roscoe’s analytical expressions. Nevertheless, both NNs demonstrate sufficient
accuracy to reproduce the steady-state tank-treading frequency for all particles investigated.

5.2.2. Transient particle deformation

Next, we analyse the time-dependent deformation (shape and orientation) of an initially spherical elastic (neo-Hookean) particle
suspended in simple shear flow. For this, we choose a particle with a Capillary number of Ca = 0.4 as investigated in the study of
Gao et al., [26], and additionally a particle with Ca = 0.8. The resulting transient particle deformations are displayed in Fig. 13 (a,b)
for Ca = 0.4 and in (c,d) for Ca = 0.8. Observe the excellent agreement in the aspect ratios ¢, £, as well as the particle orientation ¢
evolution between the reference results [26] and NN models in the case of Ca = 0.4. In the case of Ca = 0.8, we employ the present
model using Roscoe’s analytical expressions as employed in our earlier work (see Wedel [30]) as the reference, as no literature

reference is available. Again, we observe an excellent agreement between the present model employing the NNs and the reference
analytical model.

5.3. Shape dynamics of soft ellipsoidal particles in simple shear flow

Finally, we investigate the behavior of neutrally buoyant, deformable ellipsoidal particles in a simple shear flow. As demonstrated
in our previous study [30] and by others [25,26], initially spherical particles suspended in such flows can evolve toward a steady
state in both shape and orientation. However, this behavior does not hold for soft particles with an initially ellipsoidal shape. Prior
studies [27,29] have shown that ellipsoidal particles in shear flow typically exhibit either trembling (TR) or tumbling (TU) dynamics.
Trembling occurs when elastic forces, which act to preserve the initial ellipsoidal shape, dominate over hydrodynamic forces, resulting
in the major axis of the deformed particle oscillating between two angular positions. In contrast, tumbling arises when hydrodynamic
forces become strong enough to overcome the elastic resistance, causing the particle’s major axis to undergo a full, albeit irregular,
rotation. It is important to note that all material lines within the particle are continuously rotating; thus, distinguishing between
TR and TU dynamics relies on visually tracking the motion of the long axis. More precisely, these regimes can be differentiated by
monitoring the evolution of two material lines, /, and /., which initially align with the in-plane semi-axes a; and a3, respectively
(a; = a, > a3). Owing to ongoing internal deformation, both lines rotate in the direction defined by the solid spin tensor w,.
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(a) Ca =04 (TU) (b) Ca=0.5(TR)

Fig. 14. Transient deformation of a neo-Hookean elastic (initially oblate) particle with (a) Ca = 0.4 and (b) Ca = 0.5 suspended in simple shear flow.
Aspect ratio parameters £,,, ¢ = 1,2: mm Sanagavarapu et al. [29], == present model (NN-An.), == present model (NN-DNS).

Note that the major semi-axis a; and the minor semi-axis a3 of the initial particle lie within the shear plane. In this work, we
adopt the convention a; > a, > a3, defining the aspect ratios as 4, = a; /a3 and A, = a, /a3, where 4, > 4,. In contrast, [29] defines
the shape dynamics using the in-shear-plane aspect ratio [, and the out-of-shear-plane aspect ratio /,. For the initially oblate particle
considered, with its initial plane E’I - Eg lying in the shear plane E, — E,, we observe that 2 1 (t = 0) initially matches 4,(t = 0).

The oblate particles studied have initial aspect ratios of Z,(z = 0) = Z,(r = 0) = 2.5 in and out of the shear plane. The particle
softness parameter Ca is set to either 0.4 or 0.5, where the former leads to TU dynamics and the latter results in TR dynamics, as
reported in [29], and reproduced in our earlier work, see [31]. Fig. 14 (a,b) displays the evolution of the in-shear and out-of-shear
plane aspect ratios Z,, « = 1,2, for Ca = 0.4 and Ca = 0.5, respectively.

As depicted in Fig. 14 (a), both of our NN models produce results that excellently agree with the transient deformation behaviour of
the initially oblate particle in the TU regime, as reported by [29]. Similarly, Fig. 14 (b) confirms that the proposed method accurately
reproduces the transient deformation response of initially oblate particles in the TR regime. Furthermore, the results show that even
for Ca = 0.5, where the half-axis ratio A; = a;/a; exceeds the upper limit of the training data set (4, = a;/a; > 10) at certain time
instances, the model still performs sufficiently accurate and is able to reproduce the transient deformation behaviour of the ellipsoidal
soft particle studied.

As illustrated in Figs. 1, 2, and 4, several form coefficients vary significantly as the particle elongation approaches 4, = 10.
Extending the range only slightly beyond this value still falls within a regime of pronounced coefficient changes. The fact that the
model is able to reproduce these variations accurately, even though it was trained only up to 4, = 10, highlights its robustness in
capturing particle behavior slightly outside the training domain.

Remark on the efficiency of the data-driven surrogate model:

We want to point out that employing the presented surrogate model can provide a speed advantage in evaluating the tractions
exerted on the particle surface, even when compared to the analytical solution, which requires evaluating elliptic integrals. This is
particularly evident for triaxial particles, where the final values of «, f,, and y, do not degenerate to simple expressions and instead
contain complete elliptic integrals of the second kind, making the analytical implementation more complex and computationally
demanding depending on the employed framework. The employed NN is deliberately kept small, with two inputs, four hidden layers
of 8, 8, 8, and 6 neurons, and either two outputs (shear, rotational flow) or three outputs (expansional flow), which makes inference
efficient and straightforward to implement. In demonstrative evaluations, we observed that the novel surrogate model reduced the
traction evaluation time of a given triaxial particle by approximately half compared to the analytical evaluation.

Finally, recall that the computational speedup of the pseudo-rigid-body approach based on analytical traction expressions relative
to DNS was analyzed in our previous work (Appendix F of [30]), where a detailed discussion of efficiency is provided. There, we
showed that particle-resolved simulations (BEM) require on the order of 10? s per particle per time step, making them impractical for
large particle numbers. In contrast, our point-particle method requires only about 0.0003 s per particle per time step with analytical
tractions, and about 0.00014 s with the present surrogate model, enabling simulations with millions of particles. It should also be
emphasized that the surrogate framework, which here combines DNS and a neural network, is the only feasible approach in situations
where analytical traction data are unavailable. This highlights the potential of the present methodology for extension to more complex
soft-particle geometries, such as superellipsoids.

6. Conclusion

In this work, we present a novel data-driven surrogate framework for capturing the deformation dynamics of soft particles,
both initially spherical and ellipsoidal, subjected to external flows. In the present study, the surrogate model is implemented using
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neural networks. At the core of our approach is the representation of the required force dyad as a linear combination of the velocity
gradient components, scaled by flow-type-dependent form coefficients. We demonstrated that such form coefficients exist and can be
meaningfully defined for shear, rotational, and extensional components of the velocity gradient.

To train the NN, we investigated two complementary strategies: one utilizing analytically derived data and another relying on high-
fidelity direct numerical simulation (DNS) data obtained from boundary element method (BEM) simulations. Notably, employing the
NN yields a considerable computational speedup compared to direct analytical evaluation, as the latter (in general) involves the costly
computation of elliptic integrals. Moreover, the use of DNS data illustrates the viability of the NN approach even in scenarios where
analytical traction data is unavailable, thereby opening the door to modeling more complex geometries such as soft superellipsoidal
particles.

We validated our method against established benchmarks from the literature for both initially (stress-free) spherical and ellipsoidal
particles. In particular, we showed that NNs trained on either analytical or DNS data successfully captured: (i) the dynamics of
ellipsoidal particles in the quasi-rigid limit within pipe flow, (ii) the steady-state and transient deformation of initially spherical
particles in shear flow, and (iii) the transient deformation behavior of initially ellipsoidal particles in both the tumbling and trembling
regimes. Across all cases, the NN-based models closely matched reference data, with negligible differences in accuracy between the
analytically and DNS-trained networks.

Recall that, although the NN itself does not impose explicit physical constraints, the derivation of the shape factors inherently
enforces properties such as symmetry and invariance. As a result, these constraints are automatically preserved in the surrogate
model.

Furthermore, note that the presented surrogate model is applicable to particles over the entire range of capillary numbers con-
sidered (0 < Ca < 1), as long as particle deformations remain within the training limits (4; < 10). Beyond this, the model inherits
the applicability restrictions of the Jeffery-Roscoe traction framework, namely that the local flow must lie within the Stokes regime
(Re, < 1) and that the suspension is dilute. Importantly, the macroscopic flow field itself is not subject to restrictions on the Reynolds
number. To summarize, this work brings together the strengths of the pseudo-rigid body framework, which is both efficient and
versatile, and the flexibility of neural networks trained with DNS (or analytically obtained) datasets. In such cases, where analytical
traction data is not available, the combination of DNS-generated training data and NN-based modeling emerges as the only feasible
approach. Importantly, this maintains the computational advantages of the pseudo-rigid body model, which avoids the need for ex-
pensive surface or volume discretization typical in state-of-the-art models. As such, the proposed framework paves the way to broaden
the applicability of pseudo-rigid body approaches to more realistic and complex particle geometries in flow.

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft for the financial support in the framework of the project STE 544/75-1
and the Slovenian Research and Innovation Agency (research core funding No. P2-0196 and project J7-60118).

CRediT authorship contribution statement

Jana Wedel: Writing—original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization; Ivan Dominik Horvat: Writing-review & editing, Investigation, Conceptualization; Nejc Vovk:
Writing-review & editing, Methodology; Matjaz Hribersek: Writing-review & editing, Supervision, Methodology, Formal analysis,
Conceptualization; Jure Ravnik: Writing-review & editing, Supervision, Methodology, Formal analysis, Conceptualization; Paul
Steinmann: Writing-review & editing, Supervision, Resources, Project administration, Methodology, Funding acquisition, Formal
analysis, Conceptualization.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Pseudo-rigid body dynamics

In this section, we provide a brief overview of the pseudo-rigid body dynamics as proposed by Cohen and Muncaster [32].

Consider a solid continuum body composed of physical points P, denoted by B = { P}. Its reference configuration (here chosen
as a unit sphere) is given by 5, the material configuration (stress-free) by B, and the spatial configuration (deformed) by 5,. The
spatial positions x € B, of the material points P are obtained from their reference positions X € B, through the deformation map
x = y(t, X) (a nonlinear vector-valued function of time and space). The corresponding mass densities of the solid, denoted by By Py
and p;, are defined per unit volume in 3, 3, and B,, respectively, and are scalar-valued functions of X, X, and x.
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Fig. A.15. An ellipsoid undergoing affine deformation into another ellipsoid. The initial ellipsoid in the material configuration has half-axes R,
which deform into half-axes r, with a = 1,2,3. The relative reference, material, and spatial position vectors =, =, and & connect the barycenter
with the positions X in the reference configuration 53,, X in the material configuration /3, and x in the spatial configuration 5,, respectively. The
Lagrangian principal directions N, are defined in the reference configuration 5, and the Eulerian principal directions n, in the spatial configuration
B,, with a = 1,2, 3. The fixed inertial frame of reference is denoted by E,, a = 1,2, 3 (iFoR).

The affine deformation of an ellipsoid from 13, (stress-free material configuration) to B, (deformed spatial configuration) is
sketched in Fig. A.15. Note that in this context, we employ a reference configuration B, (unit sphere) together with the shape
and orientation tensor .S.

The material positions X of a pseudo-rigid body are expressed as

X=X_+E5 with E:=X-X_ and the barycenter condition / p(s) EdV =0, (A.1)
By

In Eq. (A.1), X, labels the material position of the barycenter, = the relative material position, and dV the material volume element.
Accordingly, the deformation map y(7, X) of a pseudo-rigid body can be expressed as a superposition of the barycenter motion
x. = y.(t) and the shape deformation &(7, £), and takes the form

x=yt,X) =y, () + & E) with X, =y, (t=0) and &:=F(1 -5 with 1=F(=0), (A.2)

where the shape change &(1, £) is described by an affine deformation that depends on the spatially uniform deformation gradient F(r)
and the relative material positions =, with 1 denoting the (two-point) unit tensor.

The spatial volume element dv is related to the material volume element dV through the Jacobian J :=det F > 0, such that
dv = J,dV. Since J is spatially uniform, the same relation holds for the total volumes of the pseudo-rigid body in the spatial and
material configurations, i.e. vol(/3,) = J, vol(3,). To describe the velocities of the physical points P, we consider the material time
derivative v of the deformation map (at fixed X), which reads as

vi=v M +0ot,E) with v, :=y.() and v:=&tE)=F@)- -E=: A@F)-Z. (A.3)

Observe that we employ A := F. The deformation map from the unit sphere to the material configuration contains only the affine
shape-change contribution Z(Z) and can therefore be written as

E:=S5-% with §:=) RE,QE, (A.4)

Here, R, denote the semi-axes of the initially stress-free ellipsoidal particle in B,. Substituting = := S - £ into Eq. (A.2), the defor-
mation map from the unit sphere to the spatial configuration can be expressed as

x=y.O+[F@®)-S]-&. (A.5)

Appendix A.1. Barycentric dynamics

The Euler-Lagrange equation governing the barycenter dynamics of a pseudo-rigid body results as

bom=f with f:=/ bOdV+/ to dA, (A.6)

By 0B,
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with o, denoting the acceleration of the particle center and f labelling the resultant of the bulk and surface force densities b, and ¢,
respectively. Furthermore, the total mass m of the pseudo-rigid body expands as

m .= / p; dv . (A7)
By
Appendix A.2. Constitutive behavior

To model the material response, we assume in the following a quasi-incompressible Neo-Hookean stored energy density w, =
w(F). This choice leads to the Piola stress tensor P = dw,/0F, which expands as

P=u[F-F '+ InJ F". (A.8)

In Eq. (A.8), 4° and p° denote the first and second Lamé parameters, respectively, with the limit 4° - co corresponding to incom-
pressibility. The derivation connecting the pseudo-rigid body shape dynamics equation to the conventional rigid body equations of
motion is presented in detail in our previous work [30].

Appendix B. Boundary element solution of Stokes flow over a particle

The Stokes flow Green’s functions satisfy the incompressibility equation V - u = 0 and are the solutions of the singularly forced
Stokes equation. Defining & as the source point and 7 = r — £, a vector pointing from a field point to the source point with magnitude
r = |F|, the 3D free-space Green’s functions can be written as:

djj

P

FiF; PRy
G. = T, =—6——o. B.1

ij ijk 75 (B.1)
Lett = o - n denote the boundary traction, i.e., the flux of momentum into or out of the boundary. The boundary integral representation
for the Stokes problem [48] is then

c(&u; (&) = / u,-(r)Ti,-k(r,é)nk(r)dF—ﬁ / Ci(r, E)t;(r)dT., (B.2)
r r

where ¢(&) = 2a is twice the solid angle as seen from the point ¢, i.e., in the interior of the domain ¢ = 87 and at a smooth boundary
¢ = 4x. The normal vector n points into the domain. The first term on the right-hand side represents the double-layer potential of
three-dimensional Stokes flow, and the second term is the single-layer potential of three-dimensional Stokes flow.
The boundary integral Eq. (B.2) is used as the basis of our open-source Boundary Element Method (BEM) solver (available on
Zenodo [35]). The numerical implementation is based on our Laplace BEM solver [35]. We consider the boundary I' = Z I'; to be
]

decomposed into boundary elements I';:
1
c@u &= / u (P, (r, EndT — i > / Gi(r. E)t(r)dr, (B.3)
1T 1T

where ng) is the kth component of the normal vector pointing from boundary element / into the domain.
Let ® and ¥ be the interpolation functions used to interpolate the function and flux values within the boundary elements, i.e.,
u; = Z cI)mul(.”m) and t; = Z ‘Pmtfl""), where 1™ is the mth nodal value of the function within the /th boundary element. This yields
m m

i

c(Ou;(&) = 21: > ultm /F @, T (r. EndT — ﬁ 21: > itm /F ®,,Gi(r, E)dT. (B.4)
m 1 m 1

The integrals above depend only on the mesh geometry and are independent of the flow solution. As such, they may be calculated
in advance and stored. Since the boundary elements share nodes, the number of integrals that need to be stored is smaller than the
number of integrals calculated, since the integrals, which are needed by the same node, can be summed up.

To obtain a system of equations from unknown velocities and tractions, we place the source point in all boundary nodes. Storing
the integral values in matrices ([7; ;1 [Gy;], rows corresponding to different source points, and columns to different nodes in the mesh)
and flow quantities in nodal vectors {u;}, {t;}, we obtain the following system of equations:

(i} [[Tod = €L1] + (0, W]+ ()T ] = %[{tx}[GU] + (1,)[Gyy 1 + (1G]] (B.5)
(T 1+ () [ 1Ty, = €11 + ()T, = %[{rx}[cy);] +(1,)1G,y1+ (1)1, (B.6)
(i T ()T () [ITc] = el 1] = ﬁ[{zx}[GM] + (1,)1G2y1 + (12)1G. (B.7)

Boundary conditions include known values for {u,}, {u,}, {u.}, {1}, {,}, {7;}. Collocation points are placed only into nodes,
where the value is unknown. A system of linear equations is set up for all unknowns, where in case of unknown {u, } or {¢,.} Eq. (B.5)
is used, in case of unknown {u,} or {z,} Eq. (B.6) is used and in case of unknown {u_} or {#,} Eq. (B.7) is used. The Library of Iterative
solvers for Linear Systems (LIS) (Nishida et al. [49]) is used to solve the system. Additional details of the BEM employed, such as
quadrature of the integrals, can be found in [36,50,51].
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When considering flow over a particle using this method, a no-slip velocity boundary condition is prescribed at the particle surface,
and the algorithm renders boundary tractions. These can be integrated over the particle’s surface to obtain, for example, the force
and torque exerted on the particle by the fluid. The main advantage of using BEM for this task over domain-based methods, such as
finite volumes, is that boundary tractions are obtained by direct solution of the system of equations and not post-processed from the
velocity fields. Additionally, only the particle surface must be discretized; a volume mesh is not necessary, leading to much faster
computational times.
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